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Suppose we are given the general polynomial equation of degree n:
anz" + an—lzn_1 + o +alz + ay = 0’

where each of the a;’s is a rational number and a,, is not zero. We might ask if the
solutions of this equation can be expressed in terms of the coefficients aq,...,a,
using only the operations of addition, subtraction, multiplication, division, and
extraction of roots. One of the principal results of Galois Theory, Abel’s theorem,
states that such formulas exist for » < 4 and do not exist for n > 5. The reader
can find a discussion of Abel’s theorem in numerous sources, including [A], [F1],
[H1], and [H2].

In this article we will first recall the explicit radical solution of cubic polynomi-
als. We will then proceed to discuss the solution of the general quartic polynomial
by reduction to an auxiliary cubic equation, the quartic’s resolvent cubic. The
algebraic solutions presented here appear in section 4.16 of the text [E]

After defining algebraic plane curves and introducing a few facts about them,
we will present an interesting algebro-geometric interpretation of the derivation of
the resolvent cubic.

I would like to express thanks to Miles Reid for his text [R, pp. 22-24] which
inspired this article. I would also like to thank Elsa Newman, Bill Rivera, David
Smead, Chris Vaughn, and the referee, whose suggestions contributed to the
readability of the finished product.

GALOIS SOLUTION OF THE GENERAL CUBIC POLYNOMIAL. Let P(z) =
z% + a,z% + a3z + a, be a cubic polynomial with rational coefflclents To simplify
the solution we eliminate the quadratic term by setting z = x — +a,. Then P(z)
takes the form P(x) =x>+px + g, where p and g are polynomials in the
coefficients of P(z). Notice that solving P(x) readily solves P(z).

Let x4, x,, and x; be the roots of P(x), which we assume to be distinct. Notice
that since P(x) = (x — x,)(x — x,)(x — x,) has no quadratic term, the sum of the
roots must be zero. Let w be a primitive cube root of unity and define the
Lagrange resolvents, (1, x,), (w, x,), and (w?, x,), by

(1,x1) =x1 +x2 +X3 = 0
(0, %)) =x; + 0x, + 0’x, (1)

(0%, x1) = x; + 0*x; + wxs.
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Algebraic manipulation shows that the Lagrange resolvents can be computed in
terms of the coefficients of P(x) and the square root of the discriminant of P(x).
Solving equations (1) for x,, x,, and x, gives the roots of P(x) in terms of the
Lagrange resolvents. Substituting the value of the Lagrange resolvents into the
solutions of (1) yields the zeroes of P(x), from which the zeroes of P(z) can be
obtained.

GALOIS SOLUTION OF THE GENERAL QUARTIC POLYNOMIAL. Consider
the general quartic with rational coefficients, given by P(z) = z* + a,z® + a,z? +
asz + a,. As with the cubic, we first simplify the polynomial by the substitution
z =x — %a,, yielding

P(x)=x*+p> +qx+r 2)

where p, g, and r are polynomials in the coefficients of P(z2).

Let x,, X,, X5, and x, be the roots of P(x). Since P(x) = (x — x,)(x — x,)(x —
x3)(x — x,) has no cubic term, the sum of the roots once again must be zero.
Define a = (x; + x,)0(x5 + x,), B = (x; + ) x, + 1), ¥ = (x; + x,)x, + x3).
Let h € Q[z] be the polynomial & = (z — a)(z - B)(z - y) the resolvent cubic of
P(x). A little calculation shows that & = z> — 2pz? + (p? — 4r)z + ¢2.

By solving this cubic equation using the method in the preceding section, one
obtains «, B, and y. Using

0= (x; +x;) + (%3 +x,)and a = (x; +x,)(x; +x4)
0=(x; +x3) + (x, +x4)and B = (x; +x3)(x, +x,)
0= (x; +x4) +(x,+x3)and y= (x; +x4)(x, +x3),

one obtains roots of P(x). The zeroes of the original quartic may then be easily
obtained. For complete algebraic solutions of the general cubic and quartic
polynomials, see [E, §4.16], [W, §64], and [B, 16.4.10 and 16.4.11.1].

EVERYTHING YOU NEED TO KNOW ABOUT ALGEBRAIC PLANE CURVES.
To give an algebro-geometric interpretation of the resolvent cubic, we need to
introduce a few basic facts about algebraic curves. For a complete introduction to
algebraic plane curves, see the text [F2].

Let C denote the field of complex numbers and define the affine complex plane,
A?, to be the set of all ordered pairs (a, b) where a, b € C. A complex affine plane
curve is the locus of zeroes in A’ of a nonzero polynomial f & C[X,Y]. The
complex projective plane, P2, is the set of all equivalence classes [a, b, c] of
ordered triples (a, b, c) & C3\ (0,0,0) under the equivalence relation (a, b, c) ~
(a',b',c") if (a,b,c) = (Aa’, Ab', Ac') for some nonzero complex number A.
Notice that if ¢ # 0, we may divide the three coordinates by ¢ and obtain
coordinates [a, b, 1]. A complex projective plane curve is the locus of zeroes in P?
of a nonzero homogeneous polynomial F € C[X,Y, Z]. The degree of a plane
curve is the degree of its defining polynomial. Curves of degrees one, two, three,
and four are called lines, conics, cubics, and quartics, respectively.

The affine plane is contained in the projective plane by the inclusion A? < P?
given by (x, y) = [x, y, 1], with the remainder of the projective plane forming the
line at infinity, L, = {[x, y,0]1 € P2). If f(X,Y) is an element of C[X,Y] of
degree d, we can homogenize f by setting F(X,Y,Z) = Z4f(X/Z,Y/Z). F is
then a homogeneous polynomial of degree d. If f defines an affine plane curve C,
the projective plane curve defined by F is the projective closure of C.
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A general conic in P? is given as the set of zeroes of an equation
F(X,Y,Z) =aX?+ bXY + cY? + dXZ + €YZ + fZ?, 3)

where at least one of these coefficients is nonzero, and this equation is unique up
to multiplication by a nonzero constant. A conic with equation (3) is reducible if
and only if the equations

Fy(X,Y,Z) = Fy(X,Y,Z) = F,(X,Y,Z) =0

have a common solution in P?, where we use the subscripts to denote partial
derivatives. If we let A be the matrix associated with (3), then

a b/2 d/2
A=1|b/2 ¢ e/2],
d/2 e/2 f
and we can rewrite equation (3) as
X
[X Y Z]A|lY|=0.
zZ

The condition that the conic be reducible is equivalent to the condition that this
associated matrix A is singular.

The set of all conics in P? forms a five-dimensional projective space P* in the
following way. A general conic in P? is given by an equation of the form (3), where
at least one of these coefficients is nonzero, and this equation is unique up to
multiplication by a nonzero constant. So, we may identify this conic with the point
[a,b,c,d, e, f] € P°. From this perspective, the conics in P2 passing through a
given point P in P2 form a codimension one linear subspace in P°. That is, if
P = [u,v,w], then any conic through P must satisfy F(u,v,w) = au® + buv +
cv? + duw + evw + fw? = 0, and this is a linear equation in a, b, ¢, d, e, f. Simi-
larly the condition for a conic to contain points P;, P,, P;, P, € P? is given by a
system of four linear equations in a, b, ¢, d, e, f. From elementary linear algebra,
the family of conics containing all four points will be a one-dimensional linear
subspace of P° exactly when these four conditions are linearly independent. We
then have the following proposition:

Proposition. The family of conics containing the distinct points P,, P,, Py, and P, is
(projective) one-dimensional if and only if P,, P,, P,, and P, are noncollinear.

Proof: Suppose the points are noncollinear. Without loss of generality, we may
assume that P;, P,, and P, are noncollinear. It is sufficient to show there exists a
conic containing P,,..., P, and not containing P, ,,..., P, for t = 1,2, 3.

To produce a conic through P; and not through P,, P,, and P,, choose two
lines through P, and not containing P,, P, or P,. The union of these two lines is a
reducible conic containing P; and not containing P,, P, or P,.

Let [ be any line through P, not containing P, or P,. Let /' be any line through
P, not containing P; or P,. The union of / and !’ is a reducible conic containing
P, and P,, but not containing P, and P,.

We divide the last part of the proof into two cases depending on the relative
positions of P,, P,, and P,. First, suppose P, P,, and P, are noncollinear. Choose
any line /' through P; not containing P,. The union of /’ and the line through P,
and P, is then a reducible conic containing P;, P,, and P, and not P,. On the
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other hand, suppose P,, P,, and P, are collinear. Let / be the line through P, and
P; and let I be the line through P, and P;. Then the union of / and I’ is a
reducible conic containing P,, P,, and P, and not P,. This shows the family of
conics containing P;, P,, P;, and P, has dimension one. In this context, a linear
subspace of dimension one is called a pencil, so this family is a pencil of conics.

Conversely, if Py, P,, P;, and P, are collinear, let / be the line containing these
four points. Let /' be any line in P2. Then the union of [ and [’ is a reducible conic
containing all four points. Since I’ is an arbitrary line in P2, this family has
dimension two. O

Now we wish to investigate briefly the number of points of intersection of two
projective plane curves of various degrees. First, if we intersect a projective line
with a conic, we always get two points if the points are counted properly. To see
this, we can parametrize any line in the projective plane by

X=a;s+bit
Z = a3s + b3t,

where s and ¢ cannot both be zero. Substituting these equations into the equation
of a general conic gives a homogeneous quadratic polynomial in s and ¢. Setting
this polynomial equal to zero and solving yields two points [s, ¢] in the projective
line P'. Substituting back into equations (4) yields the two points where the line
meets the conic.

If we similarly investigate the intersection of two conics in the projective plane,
we find that two conics always meet in four points if the points are counted
properly. If one of the conics is reducible, this result follows from the previous
paragraph, so we may assume the conics are nonsingular. Choose coordinates in
the projective plane so that one conic has projective equation XZ = Y2, We then
parametrize this conic by the equations

X =5
Y=s§ (5)
Z =1t°,

where once again s and ¢ cannot both be zero. Substituting these equations into
the equation of a general conic gives a homogeneous quartic polynomial in s and ¢.
Setting this polynomial equal to zero and solving yields four points [s,¢] in the
projective line P'. Substituting back into equations (5) yields the four points where
the two conics meet.

These two elementary computations are special cases of a more general result
known as Bézout’s Theorem, which says that projective algebraic curves of degrees
m and n having no common component always meet in mn points if the points are
counted properly. For our purposes, the two cases outlined above suffice.

A GEOMETRIC SOLUTION TO THE GENERAL QUARTIC. Let’s go back to the
reduced quartic polynomial given in equation (2):

e+t +r=0,
where p, g, r € Q. Considering these polynomials as having complex coefficients

and setting y = x%, we see that the solutions to equation (2) are the x-coordinates
of the points of intersection of the conics with affine equations

V2+py+g+r=0
y_x2=0’
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in the affine plane A% If we take the projective closure of these curves in P2, we
get the projective curves C; and C, defined by polynomials

Fl(xayaz) =y2 +pyz +qxz+r22
Fy(x,y,2) =yz — x?,

respectively. Using Bézout’s Theorem, the curves C; and C, meet in the four
points Py, P,, P;, P,, all of which lie in the finite plane and have affine coordinates
P; = (x;, x?).

To see that the conditions imposed by P,, P,, P;, P, are independent, we need
only show that these points are noncollinear in P2. However, the four distinct
points P,, P,, P, P, all lie on the irreducible conic y = x? in the affine plane, so
they are not collinear, again by Bézout’s theorem. It follows from the proposition
that the set of conics in P? containing P,, P,, P;, P, forms a (projective) one-
dimensional linear subspace II of P>, so the conics C; and C, span II. That is, any
curve C in II has equation AF, + uF, = 0, where either A or u is not zero.

We now wish to find those conics C in the linear family II that are reducible.

N >

Figure 1. A Pencil of Conics Showing a Reducible Conic

The matrices A; of conics C; are given by

0 0 gq/2 -1 0 0
A =] 0 1 p/2 A,=| 0 0 172},
q/2 p/2 r 0 172 0

so the matrix of the polynomial F = AF; + uF, of any conic C in II is given by
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the matrix

-u 0 39A
0 A IPA+ Tp |,
3qA  3pA+ 3 rA

and C is reducible precisely when this matrix is singular. The determinant of this
matrix is

i w® = g3 + (p® — 4r)a%u + 2pap?]. (6)

As the reader can see, this equation is homogeneous in A and u of degree three,
so the roots [A, u] of this equation correspond to three reducible conics in the
family II. Let L;; be the line through P, and P,. Then L;; has affine equation
Y= (x; + x)X — x;x;. One of the three reducible conics in the family IT is
L,, + L,,, which satisfies the polynomial

[Y = (321 +35) X + 2035, ] [V = (33 +x4) X + 257,
=Y2+ (x%, +x3%)Y + (%, +x,) (x5 +x) X2+ gX +r
=F; — (x; +x3)(x3 +x,) F,

noting that, by assumption, the coefficient of the XY term is —(x; +x, + x5 + x,)

= 0. Hence, one of the roots of polynomial (6) is [1,—(x; + x,)(x; + x,)] =

[1, —a]. Similarly, the remaining two roots of polynomial (6) are [1, — 8] and

[1, —v], so that the solutions of the resolvent cubic correspond geometrically to

finding the three reducible conics in the space of conics spanned by C; and C,.
Since the reducible conics in II are

O, =Ly + Ly
O, =Ly +Ly
Oy =Ly + Ly,

it is easy to see that the intersection of any two of these conics produces the
desired points P,, P,, P;, P,.

Thus, if we interpret the roots of the general quartic as the first coordinates of
points P;, P,, P;, P, in the intersection of two conics in P2, we see that the
resolvent cubic obtained from Galois Theory is, up to a nonzero constant multiple,
just the determinant of the 3 X 3 matrix defining any conic in the family of conics
containing the four points P, P,, P,, P,. Solving the resolvent cubic corresponds
geometrically to finding the reducible conics in this family. It is then a straightfor-
ward matter to solve the quartic equation geometrically.
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compositions.

To learn Calculus without understanding what
led to its development and how it was used by
Newton and others, is like learning to play
scales on the piano without being shown any

—F. J. Swertz

The incorporation of history in the teaching of
mathematics is essential if the ideas of its
purpose, its structure, its wonder, its creative-

ness are to be aroused in the child.

—F. J. Swertz

History is commonly taught in schools to initi-
ate the young into a community—to give them
an awareness of tradition, a feeling of belong-
ing, and a sense of participation in an ongoing
process or institution. Similar goals can be
advocated for the teaching of the history of
mathematics.

—F. J. Swertz
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